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Qualitative Climate Change Assessment

To effectively incorporate climate change adaptation and to increase resiliency and decrease
vulnerability of Philpott Lake Reallocation Project, the first step was to identify where
vulnerability exists. The current USACE Screening-Level Climate Change Vulnerability Assessment
(VA) Tool and other tools described in Engineering & Construction Bulletin (ECB) 2018-14 were
used in this analysis, including the Nonstationarity Detection Tool (NSD). This discussion will start
with a literature review of climate observations and predictions before moving onto an analysis
starting at the broad regional scale and finishing at the project level with the analysis.

Literature Review

The Smith River Basin and the Philpott Dam are in Water Resource Region number 03, the South
Atlantic-Gulf Region. A January 2015 report conducted by the USACE Institute for Water
Resources summarizes the available climate change literature for this region. The report covers
both observed and predicted changes using data available through 2014. Figure 1 shows a
summary matrix of the observed and projected trends used in the report.

Multiple studies focused on observed mean temperature, mean seasonal temperature and
extreme temperatures. Generally, the studies concurred on increased average annual
temperature (Carter et al, 2014, Patterson et al, 2012, Laseter et al, 2012). However, there are
conflicting results on observed seasonal changes with some results showing warmer summers
and colder winters (Wang et al, 2009) and others showing no observed seasonal changes (Westby
et al, 2013). Analysis of global climate model (GCM) projections generally agree that over the
next century mean annual temperatures will rise with the largest increases in summer months
(Carter et al, 2014; Elguindi and Grundstein, 2013; Qi et al, 2009; Tebaldi, 2006).

Precipitation trend analysis for the South Atlantic-Gulf region showed mixed results with no clear
trend for annual precipitation totals, precipitation intensity, and extreme high precipitation
events (Wang and Zhang, 2008; McRoberts and Nielsen-Gammon, 2011; Pryor et al., 2009). Wang
and Zhang (2008) found an increase in extreme precipitation event frequency and Pryor et al.
(2009) found a statistically significant increase in the number of precipitation days per year.
Wang, Killick, and Fu (2013) investigated high and low extreme precipitation in the South-Atlantic
Gulf region and supported the findings of Wang and Zhang (2008) with an increase in high
extreme precipitation events but found no statistically significant change in the low extreme
precipitation events. Analysis of GCM projections are also split on future precipitation with some
models showing more annual precipitation and others showing less (Bastola et al, 2007; Jayakody
et al, 2013; Qi et al, 2009). There is general consensus on more intense and frequent storm
events (Gao et al 2012; Tebaldi 2006; Wang and Zhang 2008).

Studies of stream gages in the regions have shown mixed results. Xu et al (2013) showed no
statistically significant trend in stream flows. Kalra et al (2008) found a negative statistically
significant trend in annual and seasonal stream flows. Small et al (2006) found a statistically



significant negative trend for annual low flows at several gages across the region. Similar to
precipitation projections, GCM projections coupled with macro-scale hydrologic models show no
clear consensus on future stream flow trends (Bastola et al, 2007; Carter et al, 2014; Hagemann
et al, 2013; Irizarry-Ortiz et al, 2013; Qi et al, 2009; Wang et al 2013a; Wang et al 2013b).

PRIMARY VARIABLE

& Temperature
lemperature
MINIMUMS

Temperature
MAXIMUMS

“ Precipitation

Precipitation
L&Y EXTREMES

%t Hydrology/

T |
— Streamflow

I Literature
' Consensus

ICICN AEACE

(n)

Y
m (1)
N
'S\
~

(4)

o
-
o

2 3

Literature

' Consensus

(n)

N

2.}

2.}

a
Y

I mﬂ
Pt
e

NOTE: Generally, limited regional peer-reviewed literature was available for the upper portion of HUC 3.
Literature consensus includes authoritative national and regional reports, such as the 2014
National Climate Assessment.

TREND SCALE

ﬁ= LargeIncrease 4 =SmallIncrease  wmm= No Change
',"= Large Decrease < = Small Decrease ®= Mo Literature

LITERATURE CONSENSUS SCALE

7\ = Ml literature report similar trend

#P1R) = Majority report similar trends
(i) = number of relevant literature studies reviewed

E{EF Low consensus

@ = No peer-reviewed literature available for review

Figure 1- Summary matrix of observed and projected climate trends.



Vulnerability Assessment

With the knowledge that climate information and understanding is constantly evolving, USACE
has developed the USACE Screening-Level Climate Vulnerability Assessment at the Watershed-
Scale. The preliminary, screening-level nationwide analysis is built on existing, national-level tools
and data that include indicators or processes to identify vulnerabilities in watersheds with
respect to climate change.

The USACE Watershed Vulnerability Assessment Tool was used to examine the future water
supply-related vulnerability of the project area (Figure 2). For the Chowan-Roanoke watershed
(HUC 0301), this tool shows that the area is projected to be relatively less vulnerable compared
to the entirety of the USACE portfolio with respect to water supply business line for the 21
century for all wet and dry projected scenarios. While there is an increase in the Weighted Order
Weighted Average (WOWA) scores between year 2050 and year 2085 for both the Dry and Wet
scenarios (43.7 to 50.38 for Dry and 53.8 to 56.6 for Wet, respectively), the future increases still
do not exceed the threshold for inclusion among the 20% most vulnerable HUC-4 watersheds
represented by the water supply business line.
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Figure 2- Projected Vulnerability for Chowan-Roanoke Watershed with respect to Water Supply.

While the VA tool identifies watersheds that may or may not be relatively vulnerable, it may not
be appropriate to cascade those results to the project by default, because projects exist at finer
spatial scales than the HUC-4 watersheds, evidenced by the fact that the watershed for Philpott
Lake is such a relatively small portion of the overall Chowan-Roanoke watershed (212 square



miles compared to over 18,000 square miles). To give a fuller picture of the potential
vulnerabilities at this project, additional tools were employed to assess conditions by
investigating other data and projections.

Climate Hydrology Assessment Tool

The USACE Climate Hydrology Assessment Tool (CHAT) was used to examine observed and
projected trends in Chowan-Roanoke watershed hydrology to support the qualitative
assessment, based on analysis of projected annual maximum monthly mean flows for 93
combinations of general circulation model and emissions scenario (representative concentration
pathway) through the year 2099. As expected for this type of qualitative analysis, there is
considerable variability in these maximum flows (Figure 3); however, numerous maximum flows
after year 2024 do exceed all maximum flows prior to 2040, resulting in the overall projected
upward trend in mean annual maximum monthly flows over time for the Chowan-Roanoke
watershed (Figure 4). The simulated hindcast period (1959-2005) has a statistically significant
(p<0.05) increasing slope of 60 cfs/year, while the simulated future period (2006-2099) has a
statistically significant increasing slope of 34.1 cfs/year indicating that the magnitude of the
yearly increase in flow will slow but continue in the future. While this may suggest potential for
flood risk impacts in the future, it is not anticipated to have adverse water supply impacts. Water
supply is more vulnerable to low flow conditions limiting the availability of water, however higher
flood risks could lead to potential damage to water supply lines or infrastructure. The result is
gualitative only.
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Figure 3 - Range of Projected Annual Maximum Monthly Streamflow for Chowan-Roanoke Watershed.
Predicted Annual Maximum Monthly Flow is shown on the y-axis (cfs) with the range of predictions shaded
in yellow and the mean of 93 projections in blue.
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Figure 4 — Trends in Mean Projected Annual Maximum Monthly Streamflow for the Chowan-Roanoke
Watershed.

Figures 6, 7, 8, 9, and 10 come from the CHAT and show the annual maximum streamflow and
the trend line associated with the annual values for one of the larger tributaries into Philpott Lake
(USGS 02071530 Smith River at Smith River Church near Woolwine VA) and three nearby
unregulated gage stations (USGS 02069700 South Mayo River near Nettleridge VA, USGS
02070000 North Mayo River near Spencer VA, and USGS 02056900 Blackwater River near Rocky
Mount VA) (Figure 5). For each gage trendlines for the full period were analyzed for statistical
significant (p<0.05) which would indicated changes in the annual maximum streamflow over
time. Over the full period of record for these gages, the trend lines for these gages do not show
statistically significant changes in annual maximum streamflows (p>0.05). The downstream
operational control point for both flood operations and minimum flows for Philpott Dam (USGS
02072500 Smith River near Bassett VA) was also evaluated (Figure 10). Not surprisingly, there is a
statistically significant (p<0.0001) downward trend in annual maximum streamflows downstream
of Philpott when evaluating the entire period of record (since 1920) due to flood control
operations at Philpott; however, when the period of analysis is reduced to reflect only the
regulated period since Philpott went into operation, then there is no statistically significant
(p>0.05) trend for this downstream gage either.
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Figure 5 — USGS gage locations used in this analysis
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Figure 6 - Annual Maximum Streamflow for Smith River at Smith River Church near Woolwine, VA.

value=0.916.




1) Choose a HUC-4

[0301-Chowan-Roanake

Search for Gage within HUC-4 by Name

- 2) Click Map Location or Name to Select Stream Gage

Site Number

| 2072500

3) Include Only Years (if Desired)
1757

g

2018

D

2074000
2073000
2071530
2072000
2069700
2046000

‘SOUTH MAYO RIVER NEAR NETTLERIDGE, VA

2055100

(Hover Over Trend Line For Significance (p) Value)
Climate Hydrology Assessment Tool v.1.0

7| Annual Maximum | Projected Annual Max Monthly | Mean Projected Annual Max M... | Huc-4 Reference Map |

Annual Peak Instantaneous Streamflow, SOUTH MAYO RIVER NEAR NETTLERIDGE,

VA Selected

Analysis: 11/5/2020 9:24 AM

20K »
°

15K
o
g °
i
T 10k [ ]
8 ® ®
B

®
5K L4
° ° N
[ ]
®e A e ® °® ° Te ° ° -
™l ° o e o« S °%e 0%
1960 1965 1970 1975 1930 1985 1990 1395 2000 2005 2010 2015
‘Water Year

The p-value is for the

linear regression fit drawn, a
smalier p-vaiue would
indicate greater statistical
significance. There is no.
recommended threshold for
statistical significance,

but typically 0.05 is used ss
this is associaled with & 5%
risk of & Type | error or felse
positive.

Figure 7 - Annual Maximum Streamflow for South Mayo River near Nettleridge, VA. P-value=0.424.
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Figure 8 - Annual Maximum Streamflow for North Mayo River near Spencer, VA. P-value=0.681.
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Figure 9 - Annual Maximum Streamflow for Blackwater River near Rocky Mount, VA. P-value=0.129.
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Figure 10 - Annual Maximum Streamflow for Smith River near Bassett, VA, P-value<0.0001.

Nonstationarity Detection

The Nonstationarity Detection Tool (NSD) is used to look at hydrologic time series data for
stationarity, or the assumption that the statistical characteristics of hydrological time series data
are constant through time. Stationarity in data enables the use of well-accepted statistical
methods for water resources planning and design where future conditions are reliant on
observed records (Friedman, et al. 2018).

The NSD was not available for Smith River at Smith River Church near Woolwine, VA due to a lack
of sufficient data. The NSD was also used to examine the hydrologic time series of annual
maximum instantaneous peak streamflows at the same three nearby unregulated gages (Figure
11 — South Mayo River near Nettleridge, VA, Figure 12- North Mayo River near Spencer VA, and
Figure 13 — Blackwater River near Rocky Mount VA) as were investigated in the CHAT as
described above.

Nonstationarities in the mean were detected for South Mayo River (Figure 11) using the LePage
and Lombard Wilcoxon methods for annual maximum instantaneous peak streamflow. The
LePage method detects changes in underlying distribution types, and a nonstationarity was
detected in 1999. The Lombard Wilcoxon method detects changes in the mean and a
nonstationarity was detected in 1992 using a sensitivity of 0.01 with the mean before 1992 near
4000 cfs, and after 1992 near 2000 cfs. A monotonic trend analysis was performed for data for
the entire data set, from 1963-1993, and 1993-2015 and no statistically significant trend was
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found for any set using both the Mann-Kendall Test and the Spearman Rank Order Test with a
significance level of 0.05.

Nonstationarities in the distribution of the annual maximum instantaneous peak streamflow and
annual maximum stage mean were detected for North Mayo River (Figure 12) using the LePage,
Kolmogorov-Smirnov, and Energy Divisive methods, however no nonstationarities for the mean
were detected. The LePage method detects changes in underlying distribution types, and a
nonstationarity was detected for the annual maximum instantaneous peak streamflow in 1998.
The Kolmogorov-Smirnov method detects changes in the underlying distribution types, and a
nonstationarity was detected for the annual maximum instantaneous peak streamflow in 1984.
The Energy Divisive method detects changes in the underlying distribution types, and a
nonstationarity was detected for the annual maximum instantaneous peak streamflow in 1971.
In addition, the Smooth Lombard Wilcoxon method detected a smooth change in the underlying
distribution of the mean from 1995-1998. A monotonic trend analysis was performed for the
entire data set, 1946-1971, 1971-1984, 1984-1998, 1998-2015, and 1971-2015 and no statistically
significant trend was detected for any data set using both the Mann-Kendall Test and the
Spearman Rank Order Test with a significance level of 0.05. A monotonic trend analysis for 1984-
2015 did show a statistically significant trend using the Mann-Kendall Test with a p-value of
0.023, and the Spearman Rank Order Test with a p-value of 0.042, however this result was
sensitive to the exact years chosen and is driven by maximum annual flows in 1985 and 1987
which are among the 5 highest flows recorded in the 69 year record.

No nonstationarities in the mean, standard deviation, or variance were detected for Blackwater
River (Figure 13). A monotonic trend analysis was performed for the entire data set and no
statistically significant trend was found for either set using both the Mann-Kendall Test and the
Spearman Rank Order Test with a significance level of 0.05.

The NSD was also used to examine annual maximum instantaneous streamflows at the Smith
River at Philpott VA gage immediately downstream of the Philpott Dam and, as expected,
detected nonstationarities between pre- and post-construction of Philpott Lake; for the post-
construction period no nonstationarities or statistically significant trends were detected.
Downstream of Philpott Lake at Smith River near Bassett VA, the NSD detected nonstationarities
between pre- and post- construction and additional nonstationarities of the mean, variance,
standard deviation, and underlying distribution in 1998 with multiple methods.

There is a nonstationarity in the underlying distribution of the maximum annual flows around
1998 present in multiple gage locations and detected using multiple methods. While two gage
locations show a nonstationarity in the mean detected around 1998 one of those locations is
downstream of a regulated gage and no monotonic trends were statistically significant for any
location. The nonstationarities detected at this time period may be due to a multi-year drought
from 1998-2003.
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Figure 11 — Nonstationarity Analysis of Maximum Annual Flow for South Mayo River near Nettleridge, VA.
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Nonstationarities Detected using Maximum Annual Flow/Height
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Figure 12 — Nonstationarity Analysis of Maximum Annual Flow for North Mayo River near Spencer, VA.
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Figure 13 — Nonstationarity Analysis of Maximum Annual Flow for Blackwater River near Rocky Mount, VA.

Conclusion

While temperatures are forecasted to increase in the future with more extreme rain events, there is less
consensus on future annual precipitation totals and streamflow. The changing climate could lead to more
flood events at Philpott Lake. Henry County has their water intake structure on Smith River downstream
from Philpott Dam making damage to the equipment due to flooding less likely with flood operations at
Philpott Dam.

An analysis of watershed climate vulnerability has shown the area to be relatively less vulnerable for the
water supply business line compared to the entire USACE portfolio.

The nonstationarities are for annual maximum streamflows which are more relevant to flood risk impacts
and do not necessarily indicate any increased water supply impacts. In addition, a drought period the
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duration identified in the nonstationarity detection is extremely unusual in this region, and there is no
apparent indication of a trend towards more protracted droughts than those already represented in the
existing historical record.

Accordingly, no adjustments are proposed to the existing hydrologic data set to be used in the reallocation

study.
Table 1- Climate Risks to Philpott Dam
Feature or . Qualitative
Measure Trigger Hazard Harm Likelihood
Conservation Pool | Increased Increased Loss of storage in Low, accumulation
sedimentation watershed erosion | conservation pool | likely in

in warmer, drier sedimentation
future pool

Conservation Pool | Decreased Inflow | Decreased inflows | Extended periods | Moderate
leading to slower of drought with
refilling to guide slower refilling
curve

Inactive Pool Increased Increased Loss of storage in Moderate

sedimentation watershed erosion | sedimentation

in warmer, drier pool
future

Inactive Pool Decreased Inflow | Decreased inflows | Extended periods | Moderate
leading to slower of drought with
refilling to guide slower refilling
curve
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